

PRODUCT DATA SHEET FOR HOUSEHOLD COOKER HOODS

According to (EU) Nr. 65/2014

Brand		Bomann
Modell		DU 622.1
Annual Energy Consumption (AEC _{hood})	kWh/Jahr	85.6
Energy Efficiency Class ¹⁾		E
Fluid Dynamic Efficiency class (FDE _{hood})		3.4
Fluid Dynamic Efficiency class ²⁾		G
Light Efficiency (LE _{hood})	lx/W	2.0
Lighting Efficiency Class ³⁾		G
Grease Filtering Efficiency	%	76.3
Grease Filtering Efficiency class ⁴⁾		С
Minimum Air Flow in normal use	m³/h	136.6
Maximum Air Flow in normal use	m³/h	170.8
Air Flow at intensive/boost setting	m³/h	-
A-waighted Sound Power Emission at normal speed		
- at minimum speed	dB	61
- at maximum speed	dB	63
A-waighted Sound Power Emission at intensive or boost speed	dB	-
Power consumption off mode (P _O)	W	-
Power consumption in standby mode (Ps)	W	-

¹⁾ A+ (highest efficiency) to F (lowest efficiency)
2) A (highest efficiency) to G (lowest efficiency)
3) A (highest efficiency) to G (lowest efficiency)
4) A (highest efficiency) to G (lowest efficiency)