

Cooler Master MWE Gold 850 V2 (Fixed)

Anex

Lab ID#: CM85001847 Receipt Date: May 6, 2021 Test Date: May 24, 2021

Report: 21PS1847A

Report Date: May 24, 2021

Brand	Cooler Master
Manufacturer (OEM)	Huizhou Xin Hui Yuan Tech (Fusion Power)
Series	MWE Gold V2
Model Number	MPE-8501-ACAAG-U2
Serial Number	MPE8501ACAAGU21205200001
DUT Notes	

DUT SPECIFICATIONS			
Rated Voltage (Vrms)	100-240		
Rated Current (Arms)	12-6		
Rated Frequency (Hz)	50-60		
Rated Power (W)	850		
Туре	ATX12V		
Cooling	120mm Fluid Dynamic Bearing Fan (HA1225H12F-Z)		
Semi-Passive Operation	×		
Cable Design	Fixed cables		

TEST	EALL	DMEN	
		PMEN	`

Chroma 63601-5 x4 Chroma 63600-2 x2 63640-80-80 x20 63610-80-20 x2
Chroma 6530, Keysight AC6804B
N4L PPA1530 x2
Bruel & Kjaer 2270 G4
Bruel & Kjaer Type 4955-A
Picoscope TC-08 x2, Labjack U3-HV x2
UNI-T UT372 x2
Keysight U1273AX, Fluke 289, Keithley 2015 - THD
CyberPower OLS3000E 3kVA x2
3kVA x2

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Anex

EFFICIENCY AND NOISE LEVEL CERTIFICATIONS

Cooler Master MWE Gold 850 V2 (Fixed)

RESULTS	
Temperature Range (°C /°F)	30-32 / 86-89.6
ErP Lot 3/6 Ready	1
(EU) No 617/2013 Compliance	1

115V		230V		
Average Efficiency	88.544%	Average Efficiency	90.724%	
Efficiency With 10W (≤500W) or 2% (>500W)	62.127	Average Efficiency 5VSB	81.103%	
Average Efficiency 5VSB	81.863%	Standby Power Consumption (W)	0.1631680	
Standby Power Consumption (W)	0.1039970	Average PF	0.955	
Average PF	0.990	Avg Noise Output	34.43 dB(A)	
Avg Noise Output	35.11 dB(A)	Efficiency Rating (ETA)	GOLD	
Efficiency Rating (ETA)	GOLD	Noise Rating (LAMBDA)	Standard++	
Noise Rating (LAMBDA)	Standard+			

POWER SPECIFICATIONS

Rail		3.3V	5V	12V	5VSB	-12V
Max. Power	Amps	20	20	70.8	3	0.3
	Watts	100		849.6	15	3.6
Total Max. Power (W)		850				

HOLD-UP TIME & POWER OK SIGNAL (230V)

Hold-Up Time (ms)	20
AC Loss to PWR_OK Hold Up Time (ms)	16.9
PWR_OK Inactive to DC Loss Delay (ms)	3.1

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 2/17

Anex

Cooler Master MWE Gold 850 V2 (Fixed)

CABLES AND CONNECTORS				
Captive Cables				
Description	Cable Count	Connector Count (Total)	Gauge	In Cable Capacitors
ATX connector 20+4 pin (620mm)	1	1	18-22AWG	No
8 pin EPS12V (630mm) / 4+4 pin EPS12V (+125mm)	1	1/1	16-18AWG	No
6+2 pin PCIe (590mm+120mm)	2	4	16-18AWG	No
SATA (510mm+125mm+125mm+125mm)	3	12	18AWG	No
4-pin Molex (510mm+125mm+125mm+125mm)	1	4	18AWG	No
Modular Cables				
AC Power Cord (1370mm) - C13 coupler	1	1	18AWG	-

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

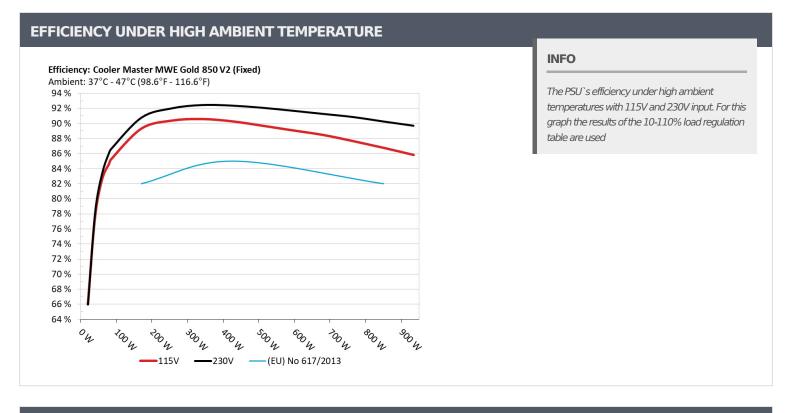
> The link to the original test results document should be provided in any case

Anex

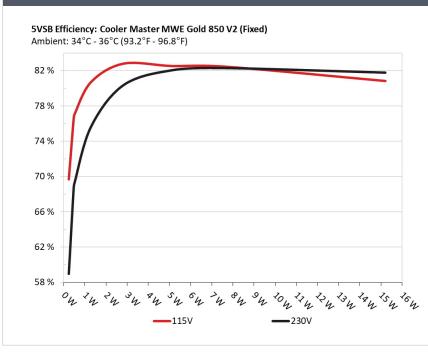
Cooler Master MWE Gold 850 V2 (Fixed)

General Data	
Manufacturer (OEM)	Huizhou Xin Hui Yuan Tech (Fusion Power)
РСВ Туре	Double Sided
Primary Side	
Transient Filter	4x Y caps, 3x X caps, 2x CM chokes, 1x MOV
Inrush Protection	NTC Thermistor MF72 5D15 (50hm) & Relay
Bridge Rectifier(s)	2x GBU15J (600V, 15A @ 100°C)
APFC MOSFETs	2x NCE Power NCE65TF130 (650V, 18A @ 100°C, Rds(on): 0.13Ohm)
APFC Boost Diode	1x ON Semiconductor RHRP1560 (600V, 15A @ 140°C)
Bulk Cap(s)	1x Ltec (400V, 680uF, 2,000h @ 105°C, HP)
Main Switchers	4x Great Power GPT13N50DG (500V, 13A, Rds(on): 0.490hm)
APFC Controller	ON Semiconductor NCP1654
Resonant Controller	Champion CM6901T6X
Topology	Primary side: APFC, Full-Bridge & LLC converter
тороюду	Secondary side: Synchronous Rectification & DC-DC converters
Secondary Side	
+12V MOSFETs	4x Excelliance MOS Corp EMP16N04HS (40V, 100A @ 100°C, Rds(on): 1.6mOhm)
5V & 3.3V	DC-DC Converters: 4x Excelliance MOS Corp EMB06N03HR (30V, 45A @ 100°C, Rds(on): 6mOhm) PWM Controller(s): ANPEC APW7159C
Filtering Capacitors	Electrolytic: 5x Ltec (4-7,000h @ 105°C, LZG), 7x Elite (4-10,000h @ 105°C, EY) Polymer: 6x FPCAP, 2x Elite, 4x info
Supervisor IC	IN1S313I-DAG
Fan Model	Hong Hua HA1225H12F-Z (120mm, 12V, 0.58A, Fluid Dynamic Bearing Fan)
5VSB Circuit	
Rectifier	1x 45R10C
Standby PWM Controller	Excelliance MOS Corp EM8569

All data and graphs included in this test report can be used by any individual on the following conditions:


> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case



Anex

Cooler Master MWE Gold 850 V2 (Fixed)

5VSB EFFICIENCY

INFO

This graph depicts the efficiency levels of the 5VSB rail with 115V and 230V input

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 5/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

Cooler Master MWE Gold 850 V2 (Fixed)

5VSB EFFICIENCY -115V (ERP LOT 3/6 & CEC)				
Test #	5VSB	DC/AC (Watts)	Efficiency	PF/AC Volts
1	0.045A	0.230	- 60 6070/	0.040
1	5.120V	0.330	69.697%	115.13V
2	0.090A	0.461		0.072
2	5.119V	0.602	76.578%	115.13V
	0.550A	2.810	00 7000/	0.295
3	5.111V	3.395	82.769%	115.13V
4	1.000A	5.102	- 02 5020/	0.388
4	5.103V	6.184	82.503%	115.13V
_	1.500A	7.641	00 4070/	0.437
5	5.095V	9.270	82.427%	115.13V
6	2.999A	15.199	00.0110/	0.494
	5.068V	18.808	80.811%	115.12V

5VSB EFFICIENCY -230V (ERP LOT 3/6 & CEC)

Test #	5VSB	DC/AC (Watts)	Efficiency	PF/AC Volts
1	0.045A	0.230	FO 074 0/	0.014
	5.120V	0.390	58.974%	230.25V
2	0.090A	0.461	co 7020/	0.025
2	5.119V	0.671	68.703%	230.25V
3	0.550A	2.810	00.000/	0.120
	5.111V	3.498	80.332%	230.24V
4	1.000A	5.102	02.0269/	0.194
4	5.103V	6.220	82.026%	230.24V
-	1.500A	7.641	02.2670/	0.255
5	5.095V	9.288	82.267%	230.24V
6	2.999A	15.199	01 7550/	0.357
	5.068V	18.591	81.755%	230.23V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 6/17

Anex

EFFICIENCY AND NOISE LEVEL CERTIFICATIONS

Cooler Master MWE Gold 850 V2 (Fixed)

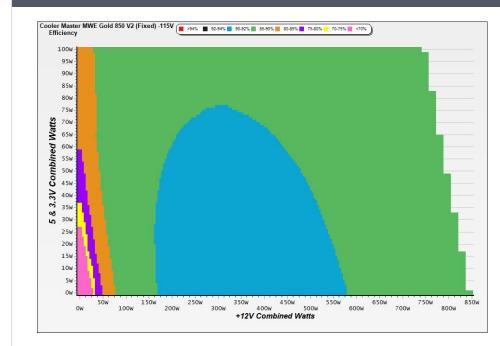
115V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

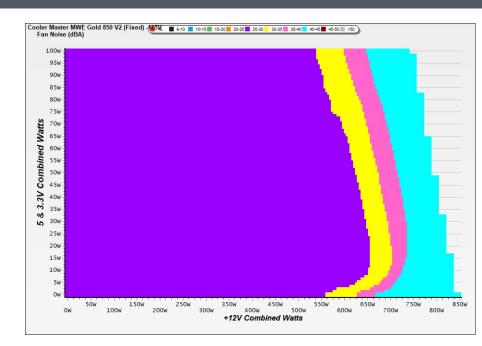
> The link to the original test results document should be provided in any case

PAGE 7/17


Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Cooler Master MWE Gold 850 V2 (Fixed)

Anex


EFFICIENCY GRAPH 115V

INFO

This graph depicts the PSU's efficiency throughout its entire operational range. For the generation of the efficiency and noise graphs we set our loaders to auto mode through our custom-made software before trying thousands of possible load combinations

NOISE GRAPH 115V

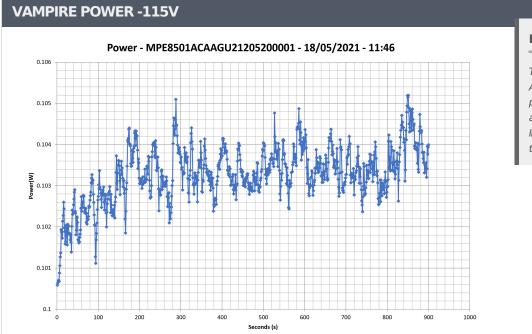
INFO

The PSU's noise in its entire operational range and under 30-32 °C ambient is depicted in this graph. The X axis represents the load on the +12V rail(s) while the Y axis is the load on the minor rails

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case


www.cybenetics.com -info@cybenetics.com 4004 MESA GEITONIA, LIMASSOL, CYPRUS

PAGE 8/17

Anex

Cooler Master MWE Gold 850 V2 (Fixed)

INFO

This graph is generated by the PPA Standby Power Analysis software which takes full control of the power analyzer during the whole procedure. This application features all of the EN50564 & IEC62301 test limits for standby power software testing

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 9/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

Cooler Master MWE Gold 850 V2 (Fixed)

10-110% LOAD TESTS 115V											
Test #	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	Temps (In/Out)	PF/AC Volts	
1	5.242A	1.978A	1.965A	0.982A	84.951	05 01 00/		25.4	40.70°C	0.974	
1	12.085V	5.056V	3.359V	5.093V	99.689	85.216%	1050		45.32°C	115.14V	
2	11.510A	2.969A	2.948A	1.181A	169.983	00 2010/	1050	25.7	41.02°C	0.981	
2	12.084V	5.053V	3.356V	5.081V	190.348	89.301%	1052		46.36°C	115.13V	
2	18.119A		1054	05.7	41.24°C	0.987					
3	12.083V	5.050V	3.353V	5.069V	282.162	90.365%	1054	25.7	47.05°C	115.13V	
	24.735A	3.962A	3.942A	1.581A	339.972				41.40°C	0.993	
4	12.079V	5.047V	3.350V	5.058V	375.336	90.578%	1055	25.7	47.83°C	115.13V	
_	30.979A	4.955A	4.930A	1.784A	424.722	00.0700/	.272% 1067	05.4	42.64°C	0.995	
5	12.080V	5.045V	3.346V	5.046V	470.494	90.272%		25.4	49.74°C	115.13V	
6	37.215A	5.954A	5.922A	1.986A	509.261	00 00 00 /	1728	39.7	42.97°C	0.997	
6	12.077V	5.042V	3.343V	5.034V	567.761	89.696%			50.57°C	115.12V	
_	43.524A	6.948A	6.916A	2.189A	594.563	89.077%	1987	43.7	43.21°C	0.997	
7	12.073V	5.038V	3.340V	5.022V	667.469				51.44°C	115.12V	
0	49.867A	7.947A 7.908A 2.394A 679.837	679.837	00.4710/ 1005	42.0	43.86°C	0.997				
8	12.061V	5.034V	3.337V	5.011V	768.433	88.471%	1995	43.8	52.82°C	115.11V	
0	56.529A	8.444A	8.397A	2.398A	764.792	07.0400/	2010	43.8	44.85°C	0.998	
9	12.070V	5.033V	3.334V	5.001V	872.594	87.646%	2010		54.36°C	115.10V	
10	62.978A	8.950A	8.915A	3.010A	849.636	00 70 40/	2012	13 43.8	46.02°C	0.998	
10	12.067V	5.028V	3.330V	4.981V	979.247	86.764%	2013		56.45°C	115.10V	
11	70.008A	8.953A	8.922A	3.015A	934.393	05 01 50/	2015	43.8	46.73°C	0.998	
11	12.066V	5.025V	3.328V	4.974V	1088.851	85.815%	2015		57.31°C	115.10V	
0.1	0.116A	11.998A	11.997A	0.000A	102.193			4 25.7	42.45°C	0.988	
CL1	12.087V	5.051V	3.350V	5.094V	122.510	83.416%	1054		49.37°C	115.15V	
	70.817A	1.000A	1.000A	1.000A	867.801	07.0000/	2227	43.7	46.29°C	0.998	
CL2	12.065V	5.032V	3.336V	5.026V	994.186	87.288%	2007		56.29°C	115.11V	

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

 $\ensuremath{\mathsf{\mathsf{>}}}$ The link to the original test results document should be provided in any case

PAGE 10/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

Cooler Master MWE Gold 850 V2 (Fixed)

20-80W LOAD TESTS 115V										
12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	PF/AC Volts		
1.227A	0.495A	0.490A	0.196A	19.977		1044	24.8	0.838		
12.081V	5.058V	3.362V	5.114V	30.270	05.990%			115.14V		
2.456A	0.989A	0.982A	0.391A	39.965		1044	24.8	0.927		
12.079V	5.057V	3.361V	5.108V	51.590	//.40/%			115.14V		
3.688A	1.483A	1.473A	0.588A	59.998	02 505%	1046	24.9	0.965		
12.080V	5.056V	3.360V	5.102V	72.641	82.595%			115.14V		
4.913A	1.975A	1.965A	0.785A	79.950	04.0040/	10.40	25.1	0.971		
12.083V	5.056V	3.359V	5.096V	94.432	84.664%	1049		115.14V		
	1.227A 1.227A 12.081V 2.456A 12.079V 3.688A 12.080V 4.913A	12V 5V 1.227A 0.495A 12.081V 5.058V 2.456A 0.989A 12.079V 5.057V 3.688A 1.483A 12.080V 5.056V 4.913A 1.975A	I2V 5V 3.3V 1.227A 0.495A 0.490A 12.081V 5.058V 3.362V 2.456A 0.989A 0.982A 12.079V 5.057V 3.361V 3.688A 1.483A 1.473A 12.080V 5.056V 3.360V 4.913A 1.975A 1.965A	12V5V3.3V5VSB1.227A0.495A0.490A0.196A12.081V5.058V3.362V5.114V2.456A0.989A0.982A0.391A12.079V5.057V3.361V5.108V3.688A1.483A1.473A0.588A12.080V5.056V3.360V5.102V4.913A1.975A1.965A0.785A	12V 5V 3.3V 5VSB DC/AC (Watts) 1.227A 0.495A 0.490A 0.196A 19.977 12.081V 5.058V 3.362V 5.114V 30.270 2.456A 0.989A 0.982A 0.391A 39.965 12.079V 5.057V 3.361V 5.108V 51.590 3.688A 1.483A 1.473A 0.588A 59.998 12.080V 5.056V 3.360V 5.102V 72.641 4.913A 1.975A 1.965A 0.785A 79.950	12V $5V$ $3.3V$ $5VSB$ DC/AC (Watts)Efficiency1.227A $0.495A$ $0.490A$ $0.196A$ 19.977 $\partial_{5.996\%}$ 12.081V $5.058V$ $3.362V$ $5.114V$ 30.270 $\partial_{5.996\%}$ 2.456A $0.989A$ $0.982A$ $0.391A$ 39.965 $\partial_{7.467\%}$ 12.079V $5.057V$ $3.361V$ $5.108V$ 51.590 $\partial_{7.467\%}$ 3.688A $1.483A$ $1.473A$ $0.588A$ 59.998 $\partial_{2.595\%}$ 12.080V $5.056V$ $3.360V$ $5.102V$ 72.641 $\partial_{2.595\%}$ 4.913A $1.975A$ $1.965A$ $0.785A$ 79.950 $\partial_{4.664\%}$	12V $5V$ $3.3V$ $5VSB$ DC/AC (Watts)Efficiency $Fan Speed$ (RPM)1.227A $0.495A$ $0.490A$ $0.196A$ 19.977 3.6986 $3.362V$ $5.114V$ 30.270 3.9986 $0.989A$ $0.392A$ $5.114V$ 30.270 $3.9986A$ $0.989A$ $0.982A$ $0.391A$ 39.965 7.467% 1044 12.079V $5.057V$ $3.361V$ $5.108V$ 51.590 7.467% 1044 12.079V $5.057V$ $3.361V$ $5.108V$ 51.998 3.2595% 1046 12.080V $5.056V$ $3.360V$ $5.102V$ 7.641 34.664% 1049	12V5V3.3V5VSB DC/AC (Watts)EfficiencyFan Speed (RPM)PSU Noise (dB[A])1.227A0.495A0.490A0.196A19.977 $\partial_{2.996\%}$ ∂_{104} $\partial_{2.996\%}$ ∂_{104} $\partial_{2.8}$ 12.081V5.058V3.362V5.114V30.270 $\partial_{-996\%}$ ∂_{-044} ∂_{-044} ∂_{-044} 12.079V5.057V3.361V5.108V 3.995 $\partial_{-7.467\%}$ ∂_{-044} $\partial_{-8.467\%}$ 12.079V5.057V3.361V5.108V51.998 $\partial_{-2.95\%}$ ∂_{-044} $\partial_{-2.464}$ 12.080V5.056V3.360V5.102V72.641 $\partial_{-8.466\%}$ ∂_{-049} $\partial_{-2.46}$ 1.913A1.975A1.965A0.785A79.950 $\partial_{-8.466\%}$ ∂_{-049} $\partial_{-2.46}$		

RIPPLE MEASUREMENTS 115V

Test	12V	5V	3.3V	5VSB	Pass/Fail
10% Load	10.40mV	11.60mV	12.30mV	9.60mV	Pass
20% Load	14.70mV	14.00mV	15.40mV	10.50mV	Pass
30% Load	13.80mV	16.20mV	22.90mV	10.70mV	Pass
40% Load	15.40mV	16.50mV	28.30mV	11.70mV	Pass
50% Load	16.60mV	17.50mV	22.40mV	12.60mV	Pass
60% Load	18.70mV	20.20mV	24.10mV	14.50mV	Pass
70% Load	21.20mV	20.50mV	25.80mV	15.60mV	Pass
80% Load	24.00mV	20.60mV	31.70mV	17.00mV	Pass
90% Load	25.70mV	22.10mV	40.60mV	17.40mV	Pass
100% Load	37.30mV	25.40mV	45.50mV	18.60mV	Pass
110% Load	41.30mV	25.90mV	48.10mV	19.40mV	Pass
Crossload1	16.70mV	18.60mV	23.90mV	12.40mV	Pass
Crossload2	39.30mV	20.80mV	36.60mV	17.80mV	Pass

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 11/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

EFFICIENCY AND NOISE LEVEL CERTIFICATIONS

Cooler Master MWE Gold 850 V2 (Fixed)

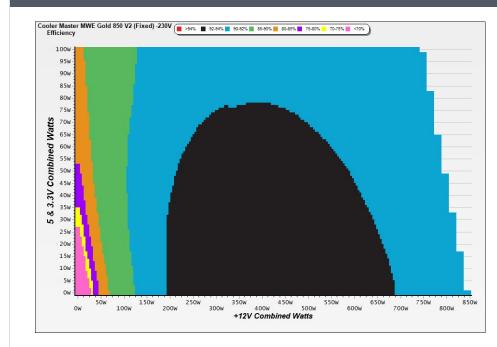
230V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

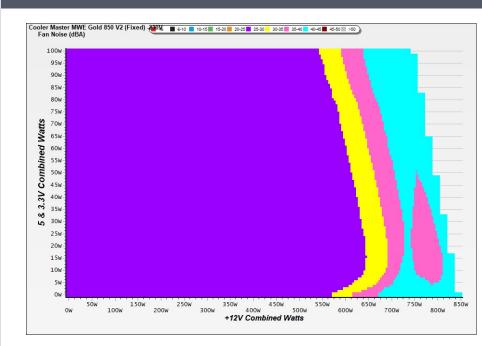
> The link to the original test results document should be provided in any case

PAGE 12/17


Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Cooler Master MWE Gold 850 V2 (Fixed)

Anex


EFFICIENCY GRAPH 230V

INFO

This graph depicts the PSU's efficiency throughout its entire operational range. For the generation of the efficiency and noise graphs we set our loaders to auto mode through our custom-made software before trying thousands of possible load combinations

NOISE GRAPH 230V

INFO

The PSU's noise in its entire operational range and under 30-32 °C ambient is depicted in this graph. The X axis represents the load on the +12V rail(s) while the Y axis is the load on the minor rails

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 13/17

Anex

Cooler Master MWE Gold 850 V2 (Fixed)

VAMPIRE POWER -230V Power - MPE8501ACAAGU21205200001 - 18/05/2021 - 11:46 0.167 0.166 0.165 0.164 (M) 0.163 0.162 0.161 0.16 0.159 200 400 100 300 500 600 800 900 1000 700 Seconds (s)

INFO

This graph is generated by the PPA Standby Power Analysis software which takes full control of the power analyzer during the whole procedure. This application features all of the EN50564 & IEC62301 test limits for standby power software testing

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

Cooler Master MWE Gold 850 V2 (Fixed)

10-110% LOAD TESTS 230V										
Test #	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	Temps (In/Out)	PF/AC Volts
1	5.242A	1.980A	1.966A	0.982A	84.957			o	40.06°C	0.827
1	12.085V	5.054V	3.358V	5.090V	98.100	86.602%	1051	25.4	43.71°C	230.34V
2	11.515A	2.970A	2.952A	1.182A	170.028	00 7000/		25.7	40.52°C	0.923
2	12.082V	5.051V	3.354V	5.078V	187.334	90.762%	1053		44.82°C	230.35V
2	18.128A		1050	05.7	41.66°C	0.953				
3	12.079V	5.048V	3.352V	5.067V	277.220	91.993%	1053	25.7	46.81°C	230.35V
	24.746A	3.965A	3.942A	1.582A	340.013	02 4250/		25.7	41.71°C	0.971
4	12.075V	5.045V	3.349V	5.056V	367.839	92.435%	1054	25.7	47.66°C	230.34V
_	31.001A	4.959A	4.935A	1.784A	424.816	02.25.09/	358% 1062		42.67°C	0.978
5	12.074V	5.042V	3.345V	5.044V	459.968	92.358%		25.4	49.53°C	230.34V
6	37.232A	5.955A	5.927A	1.987A	509.333	00 0 - 00/	1474	35.1	42.86°C	0.984
6	12.074V	5.039V	3.342V	5.032V	553.188	92.072%			50.50°C	230.33V
7	43.546A	6.951A	6.921A	2.191A	594.619	01 (010/	1981	43.7	43.19°C	0.986
7	12.068V	5.035V	3.339V	5.020V	648.572	91.681%			51.23°C	230.33V
0	49.850A	7.951A		01 2610/	1001	12 7	43.31°C	0.987		
8	12.067V	5.032V	3.335V	5.007V	745.050	91.261%	1991	43.7	52.23°C	230.33V
0	56.557A	8.449A	8.399A	2.400A	764.833	00.0420/	2000	43.7	44.11°C	0.988
9	12.065V	5.029V	3.332V	4.999V	841.928	90.843%	2000		53.85°C	230.33V
10	63.002A	8.952A	8.919A	3.011A	849.671	00.0500/	2000	42.0	45.67°C	0.990
10	12.063V	5.026V	3.329V	4.980V	941.446	90.252%	5 2009	43.8	55.84°C	230.32V
	70.009A	8.956A	8.928A	3.016A	934.410	00 0000/	2014	43.8	47.13°C	0.991
11	12.066V	5.024V	3.326V	4.971V	1041.804	89.692%	2014		57.88°C	230.32V
	0.115A	11.998A	11.997A	0.000A	102.183		1054	25.7	42.59°C	0.873
CL1	12.091V	5.051V	3.350V	5.093V	120.565	84.753%	1054		49.42°C	230.33V
	70.827A	1.000A	1.002A	1.000A	867.927	00.0000/	2010	43.8	45.99°C	0.990
CL2	12.065V	5.032V	3.336V	5.025V	955.834	90.803%	2010		56.15°C	230.32V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

 $\ensuremath{\mathsf{\mathsf{>}}}$ The link to the original test results document should be provided in any case

PAGE 15/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

Cooler Master MWE Gold 850 V2 (Fixed)

PF/AC Volts
0.544
230.30V
0.683
230.32V
0.770
230.33V
0.815
230.34V

RIPPLE MEASUREMENTS 230V

Test	12V	5V	3.3V	5VSB	Pass/Fail
10% Load	13.30mV	11.20mV	12.90mV	9.10mV	Pass
20% Load	17.50mV	11.10mV	14.20mV	9.90mV	Pass
30% Load	17.00mV	14.50mV	23.70mV	10.40mV	Pass
40% Load	15.40mV	15.50mV	26.20mV	12.00mV	Pass
50% Load	17.90mV	16.70mV	22.00mV	13.00mV	Pass
60% Load	18.90mV	18.00mV	24.40mV	13.80mV	Pass
70% Load	19.90mV	18.80mV	24.70mV	15.30mV	Pass
80% Load	22.40mV	20.90mV	34.00mV	15.60mV	Pass
90% Load	25.50mV	22.70mV	39.50mV	16.50mV	Pass
100% Load	37.10mV	23.80mV	40.10mV	18.10mV	Pass
110% Load	41.20mV	24.80mV	42.40mV	19.40mV	Pass
Crossload1	18.60mV	18.20mV	25.10mV	12.70mV	Pass
Crossload2	39.00mV	20.20mV	35.40mV	17.40mV	Pass

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 16/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Cooler Master MWE Gold 850 V2 (Fixed)

Anex

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 17/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted