

EFFICIENCY AND NOISE LEVEL CERTIFICATIONS

Lian Li EDGE 1000

Lab ID#: LL10002400 Receipt Date: Mar 20, 2024 Test Date: Mar 29, 2024

DUT INFORMATION

Brand	Lian Li
Manufacturer (OEM)	Helly Technology
Series	EDGE
Model Number	EG1000
Serial Number	
DUT Notes	

Report: 24PS2400A

Report Date: Apr 1, 2024

DUT SPECIFICATIONS						
Rated Voltage (Vrms)	100-240					
Rated Current (Arms)	12-6					
Rated Frequency (Hz)	50-60					
Rated Power (W)	1000					
Туре	ATX12V					
Cooling	120mm Fluid Dynamic Bearing Fan (HA1225M12F-Z)					
Semi-Passive Operation	1					
Cable Design	Fully Modular					

TEST EQUIPMENT

Electronic Loads	Chroma 63601-5 x2 Chroma 63600-2 63640-80-80 x10 63610-80-20
AC Sources	Chroma 6530, APM SP300VAC4000W-P
Power Analyzers	RS HMC8015, N4L PPA1530, N4L PPA5530
Oscilloscopes	Picoscope 4444, Rigol DS7014, Siglent SDS2104X PLUS
Sound Analyzer	Bruel & Kjaer 2270 G4
Microphone	Bruel & Kjaer Type 4955-A
Temperature Logger	Picoscope TC-08
Tachometer	UNI-T UT372
Multimeters	Keysight 34465A, Keithley 2015 - THD
UPS	FSP Champ Tower 3kVA, CyberPower OLS3000E 3kVA
Isolation Transformer	4kVA

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

EFFICIENCY AND NOISE LEVEL CERTIFICATIONS

Lian Li EDGE 1000

RESULTS	
Temperature Range (°C /°F)	30-32 / 86-89.6
ErP Lot 3/6 Ready	✓
(EU) No 617/2013 Compliance	1
ALPM (Alternative Low Power Mode) compatible	1
ATX v3.1 PSU Power Excursion	✓

115V		230V	230V		
Average Efficiency	89.150%	Average Efficiency	91.563%		
Efficiency With 10W (\leq 500W) or 2% (>500W)	68.889	Average Efficiency 5VSB	80.015%		
Average Efficiency 5VSB	80.418%	Standby Power Consumption (W)	0.0948000		
Standby Power Consumption (W)	0.0435000	Average PF	0.969		
Average PF	0.990	Avg Noise Output	24.47 dB(A)		
Avg Noise Output	25.06 dB(A)	Efficiency Rating (ETA)	PLATINUM		
Efficiency Rating (ETA)	PLATINUM	Noise Rating (LAMBDA)	А		
Noise Rating (LAMBDA)	A-				

POWER SPECIFICATIONS

Rail		3.3V	5V	12V	5VSB	-12V
May Dawar	Amps	20	20	83	3	0.3
Max. Power	Watts	120		996	15	3.6
Total Max. Power (W)		1000				

HOLD-UP TIME & POWER OK SIGNAL (230V)

Hold-Up Time (ms)	18.5
AC Loss to PWR_OK Hold Up Time (ms)	16.1
PWR_OK Inactive to DC Loss Delay (ms)	2.4

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 2/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

EFFICIENCY AND NOISE LEVEL CERTIFICATIONS

Lian Li EDGE 1000

CABLES AND CONNECTORS

Modular Cables				
Description	Cable Count	Connector Count (Total)	Gauge	In Cable Capacitors
ATX connector 20+4 pin (400mm)	1	1	18-22AWG	No
4+4 pin EPS12V (550mm)	2	2	18AWG	No
6+2 pin PCIe (550mm)	3	3	18AWG	No
12+4 pin PCIe (550mm) (600W)	1	1	16-26AWG	No
2x SATA (400mm+100mm)	1	4	18AWG	No
SATA (400mm+200mm+200mm+200mm)	2	8	18AWG	No
4-pin Molex (500mm+150mm+150mm+150mm)	1	4	18AWG	No

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

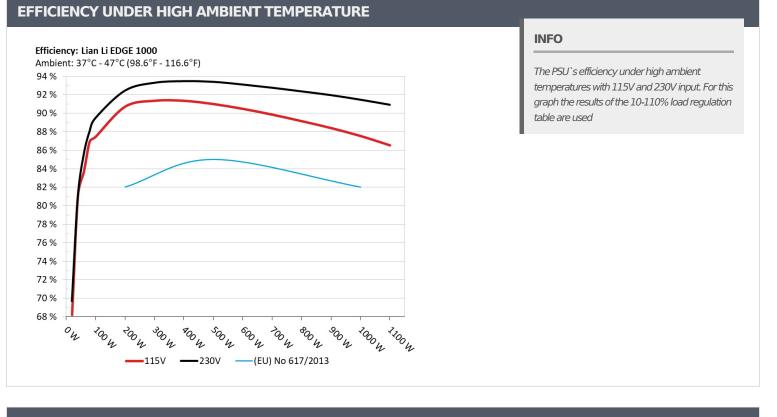
Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

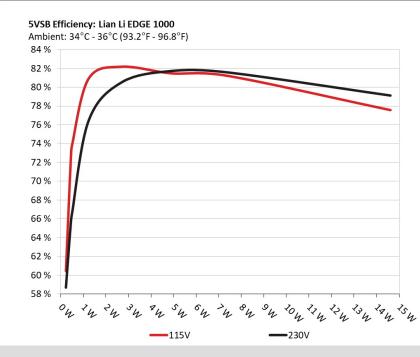
Lian Li EDGE 1000

General Data	
Manufacturer (OEM)	Helly Technology
РСВ Туре	Double-Sided
Primary Side	
Transient Filter	2x Y caps, 1x X caps, 2x CM chokes, 1x MOV
Inrush Protection	1x NTC Thermistor MF73T-2 (20 Ohm) & Relay
Bridge Rectifier(s)	2x GBU1508 (8000V, 15A @ with heatsink)
APFC MOSFETs	3x PTA25N50 (500V, 16A @ 100°C, Rds(on): 0.280hm)
APFC Boost Diode	1x G3S06510A (650V, 35A @ 25°C)
Bulk Cap(s)	2x Nichicon (400V, 470uFeach or 940 both, 2000h @ 105°C, GN(M))
Main Switchers	4x Convert CS20N50FF (500V, 20A @ 100°C, Rds(on): 0.27Ohm)
APFC/Resonant Controller	1x Champion CM6901T6
Topology	Primary side: APFC, Full-Bridge & LLC converter Secondary side: Synchronous Rectification & DC-DC converters
Secondary Side	
+12V MOSFETs	12x G013N04G
5V & 3.3V	DC-DC Converters: 2x XSEMI XP3NA3R4MT (30V, 46A @ 100°C, Rds(on): 3.4mOhm) & 3x RMN3N5R0DF (30V, 19.7A @ 70°C, Rds(on): 5mOhm) PWM Controller(s): ANPEC APW7159C
Filtering Capacitors	Electrolytic: 1x Rubycon (2-10,000 @ 105°C, YXF), 2x Nippon Chemi-Con (3-6,000 @ 105°C, W), 5x Nippon Chemi-Con (2-5000 @ 105°C, KZE), Polymer: 6x PC Caps, 23x United Chemi-Con
Supervisor IC	Weltrend WT7527 (OVD, PGO , UVD)
Fan Model	Hong Hua HA1225M12F-Z (120mm, 12V, 0.45A, Fluid Dynamic Bearing Fan)
5VSB Circuit	
High Side Rectifier	1x 60R20S
Standby PWM Controller	Excelliance MOS EM8569C

All data and graphs included in this test report can be used by any individual on the following conditions:


> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case



Anex

Lian Li EDGE 1000

5VSB EFFICIENCY

INFO

This graph depicts the efficiency levels of the 5VSB rail with 115V and 230V input

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 5/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

Lian Li EDGE 1000

5VSB EFFICIENCY (ERP LOT 3/6 & CEC)						
Test #	5VSB	DC/AC (Watts)	Efficiency	PF/AC Volts		
1	0.045A	0.222W	60.440/	0.034		
1	4.926V	0.259W	60.44%	114.88V		
2	0.09A	0.443W	70 50 40/	0.079		
2	4.925V	0.611W	72.564%	114.88V		
3	0.55A	2.704W	02.210/	0.327		
	4.916V	3.289W	82.21%	114.88V		
4	1A	4.908W	01 40 40/	0.445		
4	4.908V	6.023W	81.494%	114.88V		
5	1.5A	7.349W	01.050%	0.51		
	4.899V	9.045W	81.252%	114.87V		
	ЗА	14.614W	77 5000/	0.578		
6	4.871V	18.836W	77.588%	114.88V		

5VSB EFFICIENCY -230V (ERP LOT 3/6 & CEC)

Test #5VSBDC/AC (Watts)EfficiencyPF/AC Volts 1 0.045A0.222W 36079 0.015 1 4.926V0.378W 36799 29.96V 2 0.09A0.443W 365699 0.026 2 0.95V0.675W 365699 0.29.95V 3 0.55A2.704W 3054999 0.123 3 0.55A3.357W 3054999 0.123 4 4.908W 3174399 32.9592 4 1.5A6.004W 3174399 0.205 5 1.5A7.349W 3160399 0.278					
$ \begin{array}{c c c c c c } \hline 1 & \hline 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$	Test #	5VSB	DC/AC (Watts)	Efficiency	PF/AC Volts
4.926V0.378W229.96V20.09A0.443W 0.026 4.925V0.675W 65.656% 229.95V30.55A2.704W 0.123 4.917V3.357W 0.123 4.917V3.357W 0.205 4.909V6.004W 0.205 1.5A7.349W0.278	1	0.045A	0.222W	50 (70)/	0.015
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		4.926V	0.378W	58.679%	229.96V
$ \begin{array}{ c c c c c c } \hline 4.925 \lor & 0.675 \And & 0.675 \And & 0.675 \And & 229.95 \lor \\ \hline & & & & & & & & & & & & & & & & & &$	2	0.09A	0.443W		0.026
3 80.549% 229.95V 4 3.357W 229.95V 4 4.908W 81.743% 0.205 4.909V 6.004W 81.743% 229.95V 1.5A 7.349W 0.278	2	4.925V	0.675W	65.656%	229.95V
4.917V 3.357W 229.95V 4 1A 4.908W 81.743% 0.205 4.909V 6.004W 229.95V 229.95V 1.5A 7.349W 0.278		0.55A	2.704W	00.5400/	0.123
4 4.909V 6.004W 229.95V 1.5A 7.349W 0.278		4.917V	3.357W	80.549%	229.95V
4.909∨ 6.004W 229.95∨ 1.5A 7.349W 0.278		1A	4.908W	01 7400/	0.205
		4.909V	6.004W	81.743%	229.95V
5 81.003%	-	1.5A	7.349W	01 (000)	0.278
4.899V 9.006W 229.95V	5	4.899V	9.006W	81.603%	229.95V
3A 14.615W 0.388	C	3A	14.615W	70,1000/	0.388
6 4.872V 18.47W 229.94V	6	4.872V	18.47W	79.129%	229.94V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 6/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Lian Li EDGE 1000

Anex

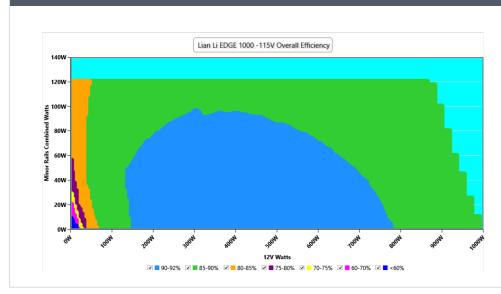
115V

All data and graphs included in this test report can be used by any individual on the following conditions:

 $\ensuremath{\mathsf{\mathsf{>}}}$ It should be mentioned that the test results are provided by Cybenetics

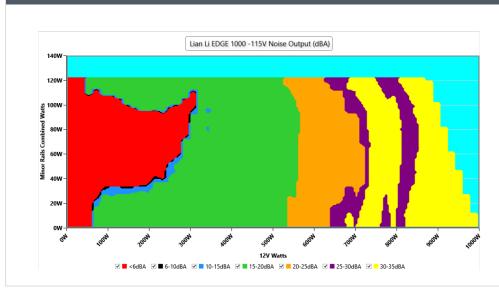
> The link to the original test results document should be provided in any case

PAGE 7/17


Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Lian Li EDGE 1000

Anex


EFFICIENCY GRAPH 115V

INFO

This graph depicts the PSU's efficiency throughout its entire operational range. For the generation of the efficiency and noise graphs we set our loaders to auto mode through our custom-made software before trying thousands of possible load combinations

NOISE GRAPH 115V

INFO

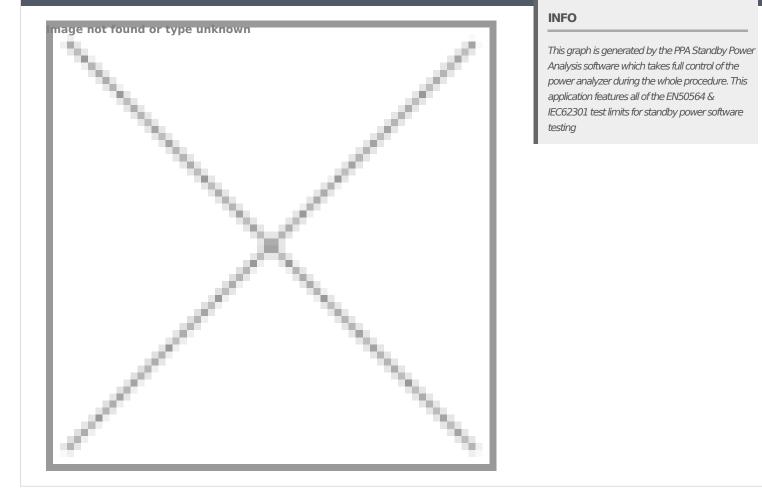
The PSU's noise in its entire operational range and under 30-32 °C ambient is depicted in this graph. The X axis represents the load on the +12V rail(s) while the Y axis is the load on the minor rails

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 8/17


Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Lian Li EDGE 1000

Anex

VAMPIRE POWER -115V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

Lian Li EDGE 1000

10-110% LOAD TESTS 115V										
Test	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	Temps (In/Out)	PF/AC Volts
10%	6.399A	2.001A	1.957A	1.007A	99.999	07.4400/	050	10.0	40.32°C	0.965
	12.252V	4.998V	3.372V	4.964V	114.358	87.443%	953	19.0	44.59°C	114.84V
200/	13.802A	3.003A	2.939A	1.21A	199.952	00 60 40/	007	10.1	40.75°C	0.982
20%	12.249V	4.995V	3.368V	4.959V	220.472	90.694%	987	18.1	45.41°C	114.81V
2001	21.557A	3.506A	3.432A	1.414A	300.006	01.005%/	1040	10.0	41.05°C	0.988
30%	12.244V	4.993V	3.365V	4.95V	328.467	91.335%	1042	19.2	46.1°C	114.77V
100/	29.279A	4.008A	3.926A	1.619A	399.611	05.000/			41.85°C	0.992
40%	12.241V	4.99V	3.362V	4.941V	437.547	91.33%	1127	22.8	47.39°C	114.75V
=00/	36.674A	5.013A	4.913A	1.823A	499.305				42.14°C	0.994
50%	12.238V	4.988V	3.359V	4.937V	548.774	90.986%	1382	28.4	48.2°C	114.7V
	44.141A	6.02A	5.902A	2A	599.719			29.3	42.7°C	0.995
60%	12.234V	4.985V	3.355V	4.933V	662.934	90.464%	1474		49.2°C	114.67V
	51.544A	7.027A	6.892A	2.233A	699.563	00 0 M/	1577	31.7	43.42°C	0.996
70%	12.231V	4.982V	3.352V	4.927V	778.678	89.84%			50.47°C	114.63V
000/	59.018A	8.034A	7.884A	2.334A	799.573	00 1070/	1.070	24.4	43.69°C	0.996
80%	12.228V	4.979V	3.349V	4.928V	897.017	89.137%	1679	34.4	51.69°C	114.6V
000/	66.821A	8.539A	8.369A	2.437A	899.357	00 2010/	1700		44.55°C	0.997
90%	12.225V	4.977V	3.346V	4.924V	1017.485	88.391%	1782	34.7	53.52°C	114.56V
	74.433A	9.046A	8.885A	3.067A	999.377	07 7000/			45.52°C	0.997
100%	12.222V	4.975V	3.343V	4.892V	1141.646	87.538%	1867	36.7	55.7°C	114.51V
1100/	81.976A	10.056A	9.973A	3.063A	1099.978	00 50 494	1075	375 36.9	46.75°C	0.997
110%	12.219V	4.972V	3.339V	4.898V	1271.305	86.524%	1875		57.68°C	114.48V
	0.115A	14.513A	14.21A	0A	121.302	01.1000/	2 457	29.3	40.17°C	0.975
CL1	12.253V	4.975V	3.357V	5.126V	149.406	81.189%	1457		41.5°C	114.83V
	0.114A	20.123A	0A	0A	101.373	70 710/	1100	22.6	40.11°C	0.969
CL2	12.253V	4.968V	3.378V	5.182V	127.177	79.71%	1162	22.6	41.51°C	114.84V
	81.829A	0A	0A	0A	999.949	00.4700/	1700	242	41.55°C	0.997
CL4	12.220V	4.993V	3.355V	4.98V	1130.172	88.478%	1722	34.3	47.94°C	114.53V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

Lian Li EDGE 1000

20-80W LOAD TESTS 115V										
Test	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	Temps (In/Out)	PF/AC Volts
2014/	1.212A	0.5A	0.488A	0.2A	20.001	CO 0100/	0		39.78°C	0.897
20W	12.255V	5.005V	3.378V	4.998V	29.325	68.219%	0	<6.0	36.65°C	114.86V
1011	2.668A	0.699A	0.684A	0.3A	40.001	- 81.113%	0	<6.0	40.57°C	0.93
40W	12.254V	5.005V	3.378V	4.995V	49.315				37.26°C	114.86V
6011/	4.124A	0.9A	0.88A	0.401A	60.001	83.646%	0	<6.0	41.88°C	0.951
60W	12.253V	5.002V	3.376V	4.989V	71.731				38.26°C	114.86V
	5.576A	1.1A	1.076A	0.502A	79.946	06.0250/	941	16.8	39.32°C	0.96
80W	12.253V	5.002V	3.375V	4.985V	91.963	86.935%			43.25°C	114.85V

RIPPLE MEASUREMENTS 115V

12V				
	5V	3.3V	5VSB	Pass/Fail
13.92mV	11.44mV	15.36mV	7.64mV	Pass
15.00mV	11.59mV	15.20mV	7.69mV	Pass
15.41mV	11.64mV	15.67mV	7.59mV	Pass
15.83mV	11.64mV	15.31mV	7.69mV	Pass
16.75mV	14.07mV	15.62mV	9.09mV	Pass
17.22mV	14.89mV	16.29mV	10.43mV	Pass
17.69mV	18.29mV	18.51mV	13.52mV	Pass
20.11mV	16.64mV	19.14mV	12.65mV	Pass
19.75mV	16.75mV	19.34mV	12.23mV	Pass
30.20mV	16.69mV	19.24mV	11.31mV	Pass
30.51mV	18.19mV	18.86mV	12.16mV	Pass
20.89mV	13.64mV	16.82mV	8.49mV	Pass
15.00mV	13.81mV	15.62mV	7.90mV	Pass
0.00mV	0.00mV	0.00mV	0.00mV	Pass
30.08mV	14.87mV	17.50mV	9.04mV	Pass
	L5.00mV L5.41mV L5.83mV L6.75mV L7.22mV L7.69mV 20.11mV L9.75mV 30.20mV 30.51mV 20.89mV L5.00mV	11.59mV 11.59mV 11.64mV 11.64mV 15.83mV 11.64mV 16.75mV 14.07mV 17.22mV 14.89mV 17.69mV 18.29mV 10.11mV 16.64mV 19.75mV 16.75mV 10.20mV 16.69mV 18.19mV 18.19mV 10.00mV 13.81mV	11.59mV 15.20mV 15.41mV 11.64mV 15.67mV 15.83mV 11.64mV 15.31mV 15.83mV 14.07mV 15.62mV 16.75mV 14.07mV 15.62mV 17.22mV 14.89mV 16.29mV 17.69mV 18.29mV 18.51mV 10.11mV 16.64mV 19.14mV 19.75mV 16.75mV 19.34mV 10.20mV 16.69mV 19.24mV 10.20mV 13.64mV 16.82mV 10.00mV 0.00mV 0.00mV	11.59mV 15.20mV 7.69mV 15.41mV 11.64mV 15.67mV 7.59mV 15.83mV 11.64mV 15.31mV 7.69mV 15.83mV 11.64mV 15.31mV 7.69mV 15.83mV 11.64mV 15.31mV 7.69mV 15.83mV 11.64mV 15.31mV 7.69mV 16.75mV 14.07mV 15.62mV 9.09mV 17.22mV 14.89mV 16.29mV 10.43mV 17.69mV 18.29mV 18.51mV 13.52mV 20.11mV 16.64mV 19.14mV 12.65mV 20.11mV 16.69mV 19.34mV 12.23mV 30.20mV 16.69mV 19.24mV 11.31mV 30.20mV 13.81mV 16.82mV 8.49mV 30.20mV 13.64mV 15.62mV 7.90mV 30.00mV 0.00mV 0.00mV 0.00mV

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 11/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

EFFICIENCY AND NOISE LEVEL CERTIFICATIONS

Lian Li EDGE 1000

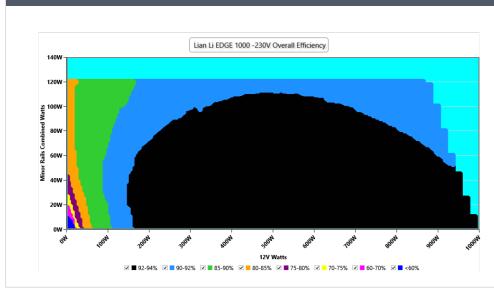
230V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

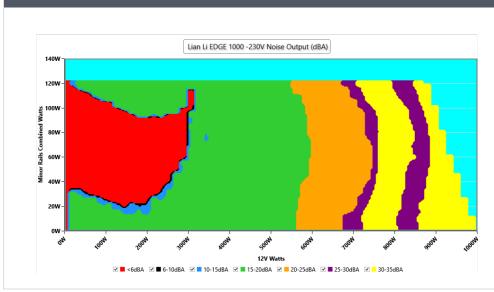
> The link to the original test results document should be provided in any case

PAGE 12/17


Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Lian Li EDGE 1000

Anex


EFFICIENCY GRAPH 230V

INFO

This graph depicts the PSU's efficiency throughout its entire operational range. For the generation of the efficiency and noise graphs we set our loaders to auto mode through our custom-made software before trying thousands of possible load combinations

NOISE GRAPH 230V

INFO

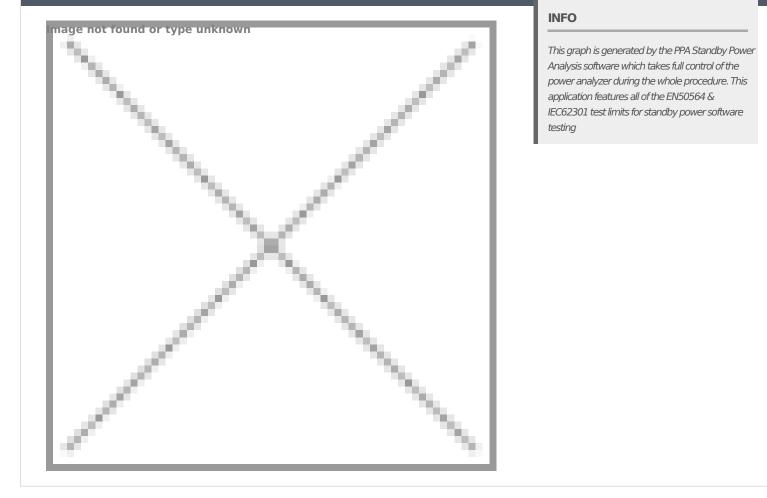
The PSU's noise in its entire operational range and under 30-32 °C ambient is depicted in this graph. The X axis represents the load on the +12V rail(s) while the Y axis is the load on the minor rails

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 13/17


Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Lian Li EDGE 1000

Anex

VAMPIRE POWER -230V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

Lian Li EDGE 1000

Test	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	Temps (In/Out)	PF/AC Volts
100/	6.398A	1.999A	1.956A	1.006A	99.984	00.4020/	1009	20.5	40.23°C	0.902
10%	12.252V	5.001V	3.374V	4.968V	111.736	89.483%			44.5°C	229.93V
200/	13.800A	3.003A	2.938A	1.209A	199.931	92.442%	1001	10.2	40.55°C	0.953
20%	12.249V	4.996V	3.369V	4.961V	216.279	92.442%		19.2	45.22°C	229.91V
200/	21.551A	3.505A	3.431A	1.414A	299.978	02 2020/	1071	21.7	41.4°C	0.968
30%	12.246V	4.994V	3.366V	4.952V	321.542	93.293%	1071	21.7	46.49°C	229.9V
400/	29.266A	4.007A	3.925A	1.619A	399.519	02.460%	11/7	22.0	41.7°C	0.977
40%	12.243V	4.991V	3.363V	4.942V	427.438	93.469%	1147	22.9	47.28°C	229.88V
50%	36.662A	5.012A	4.911A	1.823A	499.217	02 40/	1381	28.4	42.09°C	0.981
50%	12.239V	4.988V	3.36V	4.938V	534.494	93.4%			48.15°C	229.87V
600/	44.129A	6.018A	5.9A	2A	599.642	02 1070/	1470	29.3	42.8°C	0.984
60%	12.236V	4.985V		1470	29.5	49.3°C	229.85V			
70%	51.532A	7.026A	6.891A	2.232A	699.492	92.761% 1557	1557	31.6	43.3°C	0.986
7078	12.233V	4.983V	3.353V	4.928V	754.077		1557		50.32°C	229.84V
80%	59.004A	8.032A	7.882A	2.334A	799.506	92.366%	1680	34.4	43.93°C	0.988
0076	12.230V	4.98V	3.349V	4.928V	865.578	92.30070	1000		52.1°C	229.82V
90%	66.809A	8.538A	8.367A	2.437A	899.313	91.963%	1776	1776 34.6	44.86°C	0.989
9078	12.226V	4.977V	3.346V	4.924V	977.908	91.90570	1770		53.95°C	229.81V
100%	74.418A	9.044A	8.883A	3.067A	999.325	91.468%	1868	36.7	45.6°C	0.99
10070	12.224V	4.975V	3.343V	4.892V	1092.54	91.40070	1000		55.68°C	229.79V
110%	81.963A	10.056A	9.972A	3.063A	1099.931	00.0100/	1875	36.9	46.85°C	0.991
110%	12.221V	4.972V	3.339V	4.897V	1209.784	90.919%			57.76°C	229.77V
CL1	0.114A	14.509A	14.204A	0A	121.296	82.59%	1515	32.5	41.65°C	0.926
	12.256V	4.976V	3.358V	5.128V	146.862				43.81°C	229.93V
CL2	0.113A	20.122A	0A	0A	101.365	81.214%	1192	23.5	41°C	0.913
	12.257V	4.968V	3.378V	5.183V	124.812	01.21470			42.27°C	229.93V
CI 4	81.809A	0A	0A	0A	999.927	02 2520/	1777	34.6	45.56°C	0.99
CL4	12.223V	4.994V	3.356V	4.981V	1083.907	92.253%			47.41°C	229.79V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 15/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

Lian Li EDGE 1000

20-80W LOAD TESTS 230V										
Test	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	Temps (In/Out)	PF/AC Volts
2014	1.212A	0.5A	0.489A	0.2A	19.989		0	<6.0	39.74°C	0.594
20W	12.249V	5V	3.375V	4.994V	28.679	69.695%	0		36.64°C	229.96V
	2.668A	0.7A	0.684A	0.3A	39.992	80.943%	0	<6.0	41.22°C	0.747
40W	12.249V	5.002V	3.376V	4.993V	49.41				37.92°C	229.96V
<u> </u>	4.124A	0.9A	0.88A	0.401A	59.992	85.521%	0	<6.0	41.88°C	0.833
60W	12.250V	5.002V	3.375V	4.989V	70.149				38.18°C	229.95V
	5.576A	1.1A	1.075A	0.501A	79.929	88.037%	0	<6.0	43.13°C	0.876
80W	12.250V	5.002V	3.375V	4.985V	90.789				39.27°C	229.94V

RIPPLE MEASUREMENTS 230V

Test	12V	5V	3.3V	5VSB	Pass/Fail
10% Load	13.20mV	11.23mV	14.94mV	7.79mV	Pass
20% Load	14.13mV	11.69mV	14.84mV	7.59mV	Pass
30% Load	15.17mV	11.59mV	16.75mV	7.69mV	Pass
40% Load	17.74mV	11.33mV	16.44mV	7.90mV	Pass
50% Load	16.77mV	13.96mV	16.08mV	9.45mV	Pass
60% Load	17.08mV	16.12mV	17.11mV	12.44mV	Pass
70% Load	17.27mV	16.18mV	19.14mV	12.54mV	Pass
80% Load	18.92mV	16.07mV	17.94mV	11.98mV	Pass
90% Load	18.87mV	17.46mV	17.89mV	12.75mV	Pass
100% Load	30.60mV	16.01mV	18.96mV	10.86mV	Pass
110% Load	32.84mV	16.69mV	19.16mV	10.87mV	Pass
Crossload1	23.01mV	12.66mV	17.67mV	9.27mV	Pass
Crossload2	13.77mV	13.39mV	15.31mV	7.64mV	Pass
Crossload3	0.00mV	0.00mV	0.00mV	0.00mV	Pass
Crossload4	30.33mV	14.22mV	16.84mV	9.38mV	Pass

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case


PAGE 16/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

Lian Li EDGE 1000

All data and graphs included in this test report can be used by any individual on the following conditions:

- > It should be mentioned that the test results are provided by Cybenetics
- > The link to the original test results document should be provided in any case

PAGE 17/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted