

Lab ID#: CR85002088 Receipt Date: Oct 29, 2022 Test Date: Nov 11, 2022

DUT INFORMATION

Brand	Corsair
Manufacturer (OEM)	HEC
Series	RMe
Model Number	RPS0178
Serial Number	C04699660
DUT Notes	CP-9020263

EFFICIENCY AND NOISE LEVEL CERTIFICATIONS

Corsair RM850e GEN5

Report: 22PS2088A

Report Date: Nov 14, 2022

DUT SPECIFICATIONS			
Rated Voltage (Vrms)	100-240		
Rated Current (Arms)	10-5		
Rated Frequency (Hz)	47-63		
Rated Power (W)	850		
Туре	ATX12V		
Cooling	120mm Rifle Bearing Fan (HA1225H12F-Z)		
Semi-Passive Operation	1		
Cable Design	Fully Modular		

TEST EQUIPMENT	
Electronic Loads	Chroma 63601-5 x4 Chroma 63600-2 x2 63640-80-80 x20 63610-80-20 x2
AC Sources	Chroma 6530, Keysight AC6804B
Power Analyzers	N4L PPA1530 x2
Sound Analyzer	Bruel & Kjaer 2270 G4
Microphone	Bruel & Kjaer Type 4955-A
Data Loggers	Picoscope TC-08 x2, Labjack U3-HV x2
Tachometer	UNI-T UT372 x2
Digital Multimeter	Keysight U1273AX, Fluke 289, Keithley 2015 - THD
UPS	CyberPower OLS3000E 3kVA x2
Transformer	3kVA x2

All data and graphs included in this test report can be used by any individual on the following conditions:

> The link to the original test results document should be provided in any case

PAGE 1/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

EFFICIENCY AND NOISE LEVEL CERTIFICATIONS

Corsair RM850e GEN5

RESULTS	
Temperature Range (°C /°F)	30-32 / 86-89.6
ErP Lot 3/6 Ready	J
(EU) No 617/2013 Compliance	1
ALPM (Alternative Low Power Mode) compatible	1
ATX v3.0 PSU Power Excursion	✓

115V		230V
Average Efficiency	88.277%	Average Efficiency
Efficiency With 10W (≤500W) or 2% (>500W)	72.219	Average Efficiency !
Average Efficiency 5VSB	77.385%	Standby Power Cor
Standby Power Consumption (W)	0.0449000	Average PF
Average PF	0.984	Avg Noise Output
Avg Noise Output	26.34 dB(A)	Efficiency Rating (E
Efficiency Rating (ETA)	GOLD	Noise Rating (LAMB
Noise Rating (LAMBDA)	A-	

230V				
Average Efficiency	90.326%			
Average Efficiency 5VSB	77.445%			
Standby Power Consumption (W)	0.1126000			
Average PF	0.943			
Avg Noise Output	26.52 dB(A)			
Efficiency Rating (ETA)	GOLD			
Noise Rating (LAMBDA)	A-			

POWER SPECIFICATIONS

Rail		3.3V	5V	12V	5VSB	-12V
Max. Power	Amps	20	20	70.8	3	0
	Watts	150		850	15	0
Total Max. Power (W)		850				

HOLD-UP TIME & POWER OK SIGNAL (230V)

Hold-Up Time (ms)	15.6
AC Loss to PWR_OK Hold Up Time (ms)	13.4
PWR_OK Inactive to DC Loss Delay (ms)	2.2

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 2/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Corsair RM850e GEN5

Anex

CABLES AND CONNECTORS				
Modular Cables				
Description	Cable Count	Connector Count (Total)	Gauge	In Cable Capacitors
ATX connector 20+4 pin (600mm)	1	1	18-20AWG	No
4+4 pin EPS12V (640mm)	2	2	18AWG	No
6+2 pin PCle (590mm+150mm)	1	2	16-18AWG	No
6+2 pin PCle (590mm)	1	1	16AWG	No
SATA (500mm+100mm+100mm)	1	3	18AWG	No
SATA (460mm+115mm+115mm+115mm)	1	4	18AWG	No
4 pin Molex (450mm+100mm+100mm+100mm)	1	4	18AWG	No
AC Power Cord (1380mm) - C13 coupler	1	1	18AWG	-

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

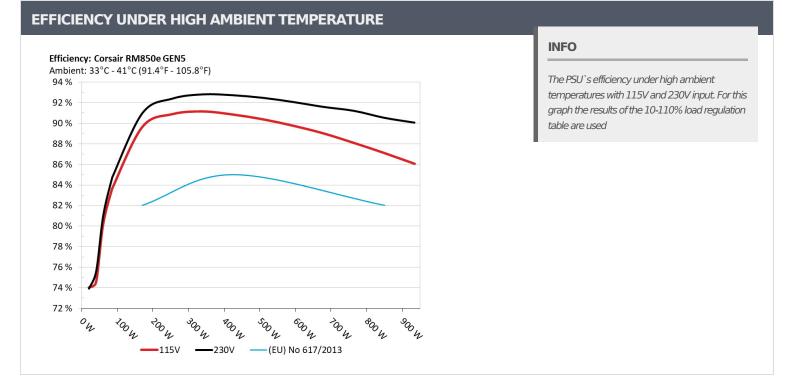
Anex

Corsair RM850e GEN5

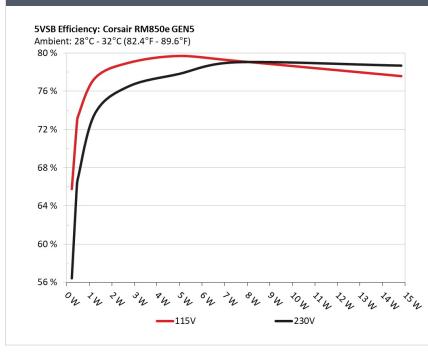
General Data	-
Manufacturer (OEM)	HEC
РСВ Туре	Double Sided
Primary Side	-
Transient Filter	4x Y caps, 3x X caps, 2x CM chokes, 1x MOV, 1x Power Integrations CAP200DG (Discharge IC)
Inrush Protection	NTC Thermistor SCK-056 (5 Ohm) & Relay
Bridge Rectifier(s)	2x MCC GBU15KL (800V, 15A @ 100°C)
APFC MOSFETs	2x GP36S60YERD
APFC Boost Diode	1x CREE C6D08065A (650V, 8A @ 155°C)
Bulk Cap(s)	1x Teapo (400V, 470uF, 2,000h @ 105°C, LS)
Main Switchers	2x Infineon IPA60R120P7 (600V, 16A @ 100°C, Rds(on): 0.120hm)
APFC Controller	Champion CM6500UN & CM03AX
Resonant Controller	Champion CM6901T6X
Topology	Primary side: APFC, Half-Bridge & LLC converter
	Secondary side: Synchronous Rectification & DC-DC converters
Secondary Side	-
+12V MOSFETs	no info
5V & 3.3V	DC-DC Converters: 8x Potens Semiconductor PDD3906 (30V, 51A @ 100°C, Rds(on): 6mOhm) PWM Controller(s): 2x APEC APW7073
Filtering Capacitors	Electrolytic: 11x Teapo (1-3,000h @ 105°C, SC), 1x Nichicon (4-10,000h @ 105°C, HE) Polymer: 4x Elite, 6x Teapo, 12x no info
Supervisor IC	Weltrend WT7527RT (OCP, OVP, UVP, SCP, PG)
Fan Model	Hong Hua HA1225H12F-Z (120mm, 12V, 0.58A, Rifle Bearing Fan)
5VSB Circuit	
Rectifier	1x PS1060L SBR (60V, 10A)
Standby PWM Controller	Power Integrations TNY290PG

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics


> The link to the original test results document should be provided in any case

PAGE 4/17



Anex

Corsair RM850e GEN5

5VSB EFFICIENCY

INFO

This graph depicts the efficiency levels of the 5VSB rail with 115V and 230V input

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 5/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

Corsair RM850e GEN5

5VSB EFFICIENCY -115V (ERP LOT 3/6 & CEC)					
Test #	5VSB	DC/AC (Watts)	Efficiency	PF/AC Volts	
_	0.045A	0.226W		0.034	
1	5.011V	0.344W	65.627%	114.92V	
2	0.09A	0.451W	72 5120/	0.061	
2	5.009V	0.622W	72.512%	114.93V	
2	0.55A	2.749W	78.839%	0.264	
3	4.997V	3.486W		114.93V	
4	1A	4.988W		0.35	
4	4.988V	6.27W	79.552%	114.93V	
-	1.5A	7.466W	70.0400/	0.406	
5	4.977V	9.446W	79.049%	114.92V	
6	3A	14.837W		0.476	
	4.945V	19.159W	77.443%	114.93V	

5VSB EFFICIENCY -230V (ERP LOT 3/6 & CEC)

Test #	5VSB	DC/AC (Watts)	Efficiency	PF/AC Volts
_	0.045A	0.225W		0.012
1	5.007V	0.4W	56.258%	229.9V
2	0.09A	0.451W	CC 0070/	0.02
2	5.007V	0.682W	66.007%	229.91V
_	0.55A	2.749W		0.102
3	4.996V	3.598W	76.368%	229.89V
4	1A	4.987W	77.0000/	0.168
4	4.987V	6.421W	77.669%	229.91V
-	1.5A	7.465W		0.217
5	4.976V	9.464W	78.879%	229.91V
6	ЗА	14.836W		0.328
	4.945V	18.89W	78.535%	229.91V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 6/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

EFFICIENCY AND NOISE LEVEL CERTIFICATIONS

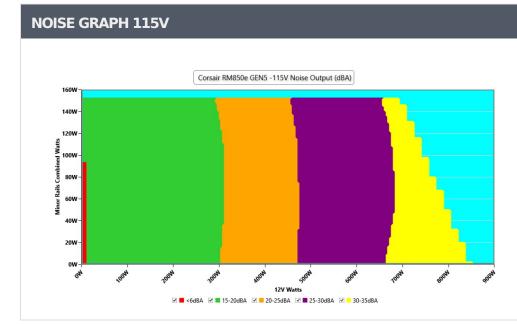
Corsair RM850e GEN5

115V

All data and graphs included in this test report can be used by any individual on the following conditions:

> The link to the original test results document should be provided in any case

PAGE 7/17


Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

Corsair RM850e GEN5

EFFICIENCY GRAPH 115V INFO Corsair RM850e GEN5 -115V Overall Efficiency This graph depicts the PSU's efficiency throughout 160W its entire operational range. For the generation of 140W the efficiency and noise graphs we set our loaders to auto mode through our custom-made software 120W before trying thousands of possible load H-M 100W combinations Combi 80W Rails 60W 40W 20W 20004 ROOM and here OW NOON ON 12V Watts ☑ 90-92% ☑ 85-90% ☑ 80-85% ☑ 75-80% ☑ 70-75% ☑ 60-70% ☑ <60%

INFO

The PSU's noise in its entire operational range and under 30-32 °C ambient is depicted in this graph. The X axis represents the load on the +12V rail(s) while the Y axis is the load on the minor rails

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 8/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Corsair RM850e GEN5

Anex

VAMPIRE POWER -115V

	Detailed Results										
	Average	Min	Limit Min	Max	Limit Max	Result					
Mains Voltage RMS:	114.93 V	114.89 V	113.85 V	114.97 V	116.15 V	PASS					
Mains Frequency:	60.00 Hz	59.96 Hz	59.40 Hz	60.02 Hz	60.60 Hz	PASS					
Mains Voltage CF:	1.417	1.416	1.340	1.419	1.490	PASS					
Mains Voltage THD:	0.15 %	0.12 %	N/A	0.20 %	2.00 %	PASS					
Real Power:	0.045 W	0.011 W	N/A	0.071 W	N/A	N/A					
Apparent Power:	9.992 W	9.974 W	N/A	10.014 W	N/A	N/A					
Power Factor:	0.006	N/A	N/A	N/A	N/A	N/A					

INFO

This graph is generated by the PPA Standby Power Analysis software which takes full control of the power analyzer during the whole procedure. This application features all of the EN50564 & IEC62301 test limits for standby power software testing

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Anex

Corsair RM850e GEN5

Test	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	Temps (In/Out)	PF/AC Volts
100/	5.228A	2A	1.991A	1.002A	85.007	02 71 50/	001	21.2	36.49°C	0.964
10%	12.127V	4.999V	3.314V	4.99V	101.546	83.715%	891	21.2	40.75°C	114.92V
20%	11.488A	3.003A	2.991A	1.204A	169.949	90 6260/	0/1	10.2	37.33°C	0.974
20%	12.104V	4.995V	3.31V	4.982V	189.616	89.626%	841	19.3	41.88°C	114.9V
200/	18.101A	3.505A	3.493A	1.407A	254.951	00.0040/	0E 4	10.7	37.57°C	0.977
30%	12.093V	4.993V	3.306V	4.974V	280.525	90.884%	854	19.7	42.69°C	114.87V
400/	24.735A	4.008A	3.997A	1.611A	340.037	01 1 40/	006	21.0	38.17°C	0.982
40%	12.082V	4.99V	3.302V	4.966V	373.094	91.14%	886	21.0	43.74°C	114.85V
E00/	31.021A	5.013A	5.003A	1.815A	424.928	00.040/	051	22.0	38.22°C	0.986
50%	12.070V	4.987V	3.298V	4.959V	467.776	90.84%	951	23.0	44.27°C	114.83V
600/	37.286A	6.02A	6.011A	2A	509.339	00 2740/	1007	DE 1	38.69°C	0.988
60%	12.059V	4.984V	3.294V	4.951V	563.589	90.374%	1027	25.1	45.34°C	114.82V
700/	43.629A	7.028A	7.023A	2.226A	594.761	00 7420/	1110	77.4	39.18°C	0.99
70%	12.048V	4.981V	3.29V	4.943V	662.743	89.742%	1112	27.4	46.38°C	114.77V
000/	49.989A	8.002A	8.034A	2.33A	679.452	00.0020/	1010	20.4	39.31°C	0.991
80%	12.037V	4.977V	3.285V	4.937V	763.406	89.002%	1216	30.4	47.58°C	114.76V
000/	56.761A	8.546A	8.533A	2.434A	765.13	00.0000/	1510		40.08°C	0.992
90%	12.026V	4.974V	3.281V	4.931V	868.783	88.069%	1519	36.5	49.17°C	114.74V
1000/	63.284A	9.056A	9.065A	3.053A	849.962	07.0020/	1757	40.4	40.14°C	0.993
100%	12.013V	4.971V	3.276V	4.914V	975.941	87.092%	1757	40.4	50.19°C	114.72V
1100/	69.685A	10.069A	10.179A	3.056A	934.545	06.0400/	2122		40.57°C	0.993
110%	12.000V	4.967V	3.271V	4.909V	1086.085	86.049%	2132	45.5	51.43°C	114.69V
0.1	0.116A	18.153A	18.04A	0A	151.323	01 5010/		07.5	38.46°C	0.975
CL1	12.102V	4.976V	3.303V	5.002V	185.657	81.501%	1114	27.5	44.01°C	114.91V
C 12	0.115A	20.083A	0A	0A	101.415	00.050%	0.40	22.0	39.28°C	0.977
CL2	12.131V	4.98V	3.314V	5.012V	126.359	80.259%	949	23.0	46.28°C	114.91V
	0.115A	0A	19.947A	0A	67.382	72 4020/	001	24.1	40.43°C	0.964
CL3	12.126V	5V	3.308V	5.006V	91.8	73.402%	991	24.1	48.69°C	114.92V
	70.676A	0A	0A	0A	849.587	00.1000/	101-	22.0	41.98°C	0.993
CL4	12.021V	4.985V	3.287V	4.986V	964.032	88.129%	1315	32.8	51.91°C	114.73V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 10/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

Corsair RM850e GEN5

20-80W LOAD TESTS 115V										
Test	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	Temps (In/Out)	PF/AC Volts
2014	1.226A	0.5A	0.497A	0.2A	20.002	74.0070/	0	-6.0	36.41°C	0.808
20W	12.123V	5.002V	3.318V	5.006V	27.027	74.007%	0	<6.0	33.29°C	114.94V
4014/	2.696A	0.7A	0.696A	0.3A	40.003	74 5020/	020	10.0	34.07°C	0.93
40W	12.126V	5.001V	3.317V	5.005V	53.69	74.503%	828	19.0	37.38°C	114.94V
C014/	4.166A	0.9A	0.896A	0.4A	60.004	00.1.420/	052	10.0	35.58°C	0.953
60W	12.129V	5.001V	3.316V	5.003V	74.869	80.143%	853	19.6	39.29°C	114.93V
00144	5.634A	1.1A	1.095A	0.5A	79.961	02 60/	000	20.0	36.01°C	0.963
80W	12.129V	5V	3.315V	5.001V	95.649	83.6%	883	20.9	39.99°C	114.93V

RIPPLE MEASUREMENTS 115V

12V	5V	3.3V	5VSB	Pass/Fail
15.40mV	15.99mV	9.97mV	16.53mV	Pass
26.59mV	16.24mV	11.81mV	15.76mV	Pass
21.88mV	17.32mV	11.76mV	16.58mV	Pass
20.04mV	19.00mV	11.71mV	16.22mV	Pass
19.17mV	19.46mV	13.19mV	17.14mV	Pass
19.58mV	20.94mV	14.52mV	18.02mV	Pass
20.19mV	21.56mV	15.49mV	19.81mV	Pass
20.57mV	22.63mV	16.21mV	22.52mV	Pass
19.91mV	22.88mV	18.15mV	25.13mV	Pass
34.33mV	26.51mV	19.74mV	32.49mV	Pass
36.16mV	27.70mV	20.61mV	31.66mV	Pass
33.76mV	27.22mV	24.04mV	13.20mV	Pass
14.33mV	17.47mV	20.10mV	13.41mV	Pass
11.98mV	19.87mV	15.55mV	11.92mV	Pass
31.91mV	23.25mV	14.37mV	13.16mV	Pass
	15.40mV 26.59mV 21.88mV 20.04mV 19.17mV 19.58mV 20.19mV 20.57mV 20.57mV 34.33mV 36.16mV 33.76mV 14.33mV 11.98mV	15.40mV 15.99mV 26.59mV 16.24mV 21.88mV 17.32mV 20.04mV 19.00mV 19.17mV 19.46mV 19.58mV 20.94mV 20.19mV 21.56mV 20.57mV 22.63mV 19.91mV 22.88mV 34.33mV 26.51mV 33.76mV 27.20mV 14.33mV 17.47mV 11.98mV 19.87mV	15.40mV 15.99mV 9.97mV 26.59mV 16.24mV 11.81mV 21.88mV 17.32mV 11.76mV 20.04mV 19.00mV 11.71mV 19.17mV 19.46mV 13.19mV 19.58mV 20.94mV 14.52mV 20.19mV 21.56mV 15.49mV 20.57mV 22.63mV 16.21mV 19.91mV 22.88mV 18.15mV 34.33mV 26.51mV 19.74mV 35.16mV 27.70mV 20.61mV 14.33mV 17.47mV 20.10mV 11.98mV 19.87mV 15.55mV	15.40mV 15.99mV 9.97mV 16.53mV 26.59mV 16.24mV 11.81mV 15.76mV 21.88mV 17.32mV 11.76mV 16.58mV 20.04mV 19.00mV 11.71mV 16.22mV 19.17mV 19.00mV 11.71mV 16.22mV 19.17mV 19.46mV 13.19mV 17.14mV 19.58mV 20.94mV 14.52mV 18.02mV 20.19mV 21.56mV 15.49mV 19.81mV 20.57mV 22.63mV 16.21mV 22.52mV 19.91mV 22.88mV 18.15mV 25.13mV 34.33mV 26.51mV 19.74mV 31.66mV 33.76mV 27.20mV 24.04mV 13.20mV 14.33mV 17.47mV 20.10mV 13.41mV

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 11/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

EFFICIENCY AND NOISE LEVEL CERTIFICATIONS

Corsair RM850e GEN5

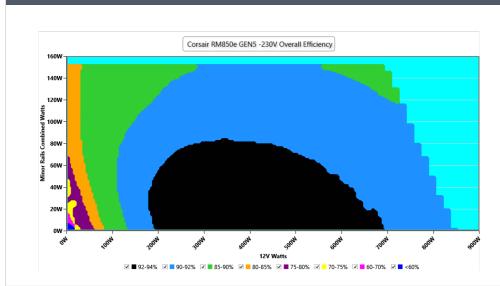
230V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

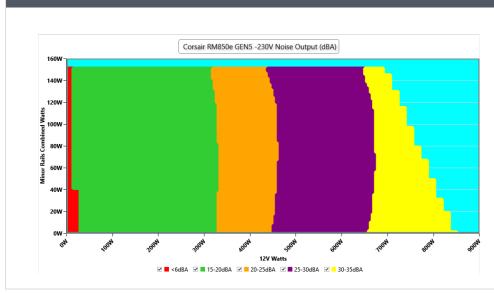
> The link to the original test results document should be provided in any case

PAGE 12/17


Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Corsair RM850e GEN5

Anex


EFFICIENCY GRAPH 230V

INFO

This graph depicts the PSU's efficiency throughout its entire operational range. For the generation of the efficiency and noise graphs we set our loaders to auto mode through our custom-made software before trying thousands of possible load combinations

NOISE GRAPH 230V

INFO

The PSU's noise in its entire operational range and under 30-32 °C ambient is depicted in this graph. The X axis represents the load on the +12V rail(s) while the Y axis is the load on the minor rails

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 13/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Corsair RM850e GEN5

Anex

VAMPIRE POWER -230V

		Detaile	Detailed Results										
	Average	Min	Limit Min	Мах	Limit Max	Result							
Mains Voltage RMS:	229.89 V	229.84 V	227.70 V	229.96 V	232.30 V	PASS							
Mains Frequency:	50.00 Hz	49.99 Hz	49.50 Hz	50.01 Hz	50.50 Hz	PASS							
Mains Voltage CF:	1.416	1.416	1.340	1.417	1.490	PASS							
Mains Voltage THD:	0.18 %	0.16 %	N/A	0.21%	2.00 %	PASS							
Real Power:	0.113 W	0.092 W	N/A	0.136 W	N/A	N/A							
Apparent Power:	33.789 W	33.762 W	N/A	33.817 W	N/A	N/A							
Power Factor:	0.003	N/A	N/A	N/A	N/A	N/A							

INFO

This graph is generated by the PPA Standby Power Analysis software which takes full control of the power analyzer during the whole procedure. This application features all of the EN50564 & IEC62301 test limits for standby power software testing

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

Anex

Corsair RM850e GEN5

10-1	10% LOA	D TESTS	230V							
Test	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	Temps (In/Out)	PF/AC Volts
100/	5.228A	2.001A	1.991A	1.002A	85.004	04 7050/	002	21.2	35.57°C	0.804
10%	12.129V	4.998V	3.314V	4.99V	100.239	84.795%	892	21.3	39.81°C	229.89V
200/	11.487A	3.003A	2.991A	1.204A	169.945	00.0710/	042	10.2	36.01°C	0.902
20%	12.105V	4.995V	3.31V	4.982V	186.813	90.971%	843	19.3	40.61°C	229.88V
200/	18.101A	3.505A	3.494A	1.407A	254.949	02 2000/	047	10.4	36.58°C	0.935
30%	12.094V	4.993V	3.306V	4.974V	275.951	92.389%	847	19.4	41.72°C	229.87V
400/	24.735A	4.008A	3.998A	1.611A	340.051	02 7060/	000	20.0	36.94°C	0.95
40%	12.082V	4.99V	3.302V	4.966V	366.45	92.796%	880	20.8	42.55°C	229.86V
E00/	31.022A	5.014A	5.004A	1.815A	424.95	02 710/	062	<u></u>	37.08°C	0.959
50%	12.070V	4.987V	3.297V	4.958V	458.363	92.71%	962	23.3	43.17°C	229.84V
600/	37.293A	6.021A	6.014A	2A	509.399	02 45 40/	007	24.0	37.25°C	0.964
60%	12.058V	4.983V	3.293V	4.951V	550.977	92.454%	987	24.0	43.69°C	229.84V
700/	43.634A	7.03A	7.025A	2.226A	594.816	02 0470/	1002	26.0	38.29°C	0.969
70%	12.048V	4.98V	3.289V	4.942V	646.218	92.047%	1092	26.9	45.38°C	229.82V
000/	49.992A	8.003A	8.036A	2.33A	679.492	01 5720/	1106	20.0	39.13°C	0.973
80%	12.037V	4.977V	3.285V	4.937V	742.007	91.573%	1196	29.9	47.24°C	229.82V
000/	56.765A	8.547A	8.536A	2.434A	765.022	01 1010/	1000	21.7	39.55°C	0.975
90%	12.023V	4.973V	3.28V	4.93V	838.923	91.191%	1268	31.7	48.64°C	229.81V
1000/	63.274A	9.055A	9.064A	3.053A	849.868	00 51 60/	1000	20.4	40.13°C	0.977
100%	12.013V	4.971V	3.276V	4.914V	938.918	90.516%	1663	39.4	50.19°C	229.79V
1100/	69.665A	10.067A	10.176A	3.055A	934.3	00.0470/	1010	41.0	40.52°C	0.978
110%	12.000V	4.967V	3.271V	4.91V	1037.579	90.047%	1816	41.6	51.41°C	229.79V
C 1	0.115A	18.154A	18.042A	0A	151.303	02.01.0%	1110	27.4	37.11°C	0.901
CL1	12.104V	4.975V	3.303V	5.002V	182.477	82.916%	1110	27.4	43.59°C	229.88V
C 12	0.115A	20.083A	0A	0A	101.408	01 4020/	0.40	22.0	38.17°C	0.845
CL2	12.131V	4.98V	3.315V	5.012V	124.442	81.493%	949	23.0	45.24°C	229.89V
0.2	0.115A	0A	19.945A	0A	67.377	74 7740/	1000	24 5	39.52°C	0.784
CL3	12.127V	5V	3.308V	5.006V	90.595	74.374%	1006	24.5	47.57°C	229.89V
	70.680A	0A	0A	0A	849.584	01 2004	1000	20.7	40.47°C	0.976
CL4	12.021V	4.984V	3.283V	4.985V	930.307	91.32%	1229	30.7	49.45°C	229.8V

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 15/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex

Corsair RM850e GEN5

20-80W LOAD TESTS 230V										
Test	12V	5V	3.3V	5VSB	DC/AC (Watts)	Efficiency	Fan Speed (RPM)	PSU Noise (dB[A])	Temps (In/Out)	PF/AC Volts
2014/	1.226A	0.5A	0.497A	0.2A	20.005		0	-6.0	36.25°C	0.454
20W	12.125V	5.001V	3.317V	5.007V	27.067	73.907%	0	<6.0	33.18°C	229.89V
40144	2.696A	0.7A	0.696A	0.3A	40.005		020	10.0	33.51°C	0.64
40W	12.128V	5.001V	3.316V	5.005V	52.943	75.565%	829	19.0	36.85°C	229.89V
C014/	4.166A	0.9A	0.896A	0.4A	60.006	01 0250/	0.40	10.5	33.88°C	0.734
60W	12.130V	5V	3.316V	5.003V	74.058	81.025%	849	19.5	37.38°C	229.89V
00147	5.634A	1.1A	1.095A	0.5A	79.963	04 7000/	076	20.6	34.24°C	0.792
80W	12.129V	4.999V	3.315V	5.001V	94.396	84.708%	876	20.6	38.09°C	229.88V

RIPPLE MEASUREMENTS 230V

Test	12V	5V	3.3V	5VSB	Pass/Fail
10% Load	13.66mV	14.40mV	9.56mV	16.17mV	Pass
20% Load	27.87mV	16.75mV	11.66mV	14.12mV	Pass
30% Load	22.24mV	17.72mV	11.71mV	14.79mV	Pass
40% Load	20.65mV	17.57mV	11.61mV	14.33mV	Pass
50% Load	19.27mV	19.51mV	12.63mV	17.25mV	Pass
60% Load	19.12mV	20.48mV	14.06mV	18.37mV	Pass
70% Load	19.22mV	21.09mV	15.24mV	18.99mV	Pass
80% Load	19.88mV	22.22mV	16.16mV	18.27mV	Pass
90% Load	21.27mV	23.19mV	18.00mV	25.49mV	Pass
100% Load	32.70mV	26.80mV	19.88mV	30.91mV	Pass
110% Load	33.21mV	28.07mV	20.94mV	35.10mV	Pass
Crossload1	33.34mV	26.46mV	24.22mV	13.33mV	Pass
Crossload2	13.10mV	19.61mV	20.10mV	12.90mV	Pass
Crossload3	12.03mV	20.79mV	16.21mV	12.74mV	Pass
Crossload4	30.02mV	23.74mV	14.39mV	12.84mV	Pass

All data and graphs included in this test report can be used by any individual on the following conditions:

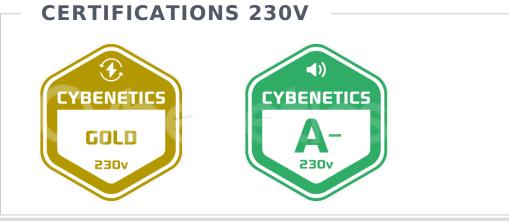
> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 16/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted

Anex


Corsair RM850e GEN5

	MODEL / MODELO / 월号 / 월號 / 모델: RPS0178 Power SUPPLY / FUENTE DE ALIMENTACIÓN / 업퓨터운전원공급장치 PART NUMBER: CP-9020263 / 75-005410								
And	交流調系	AC INPUT AC 입력 Entrada de CA				47Hz - 63Hz			
River States States	直流補助出	DC OUTPUT DC 출력 Salida de CC	+5V	+3.3V	+12V	+5Vsb			
and a conserver	日 最大電流	MAX LOAD 최대 부하 Carga Máximo	20A	20A	70.8A	ЗА			
THE REPORT OF THE PARTY OF THE	最 最 大瓦瓦特教	MAX POWER 최대 경합 와트	15	w	850W	15W			
	特數数	Wataje Combinado Máximo	PC		POWER: 850W 总功率 / 總功率				
Top side			Power sp	pecification	ns label				

CERTIFICATIONS 115V

Aristeidis Bitziopoulos Lab Director

All data and graphs included in this test report can be used by any individual on the following conditions:

> It should be mentioned that the test results are provided by Cybenetics

> The link to the original test results document should be provided in any case

PAGE 17/17

Cybenetics offers the ETA and Lambda voluntary certification programs, through which the efficient and silent power supplies are promoted